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Diffusive behavior in various Lorentz lattice gases, especially wind-tree-like 
models, is discussed. Comparisons between lattice and continuum models as 
well as deterministic and probabilistic models are made. In one deterministic 
model, where the scatterers behave like double-sided mirrors, a new kind of 
abnormal diffusion is found, viz., the mean square displacement is proportional 
to the time, but the probability density distribution function is non-Gaussian. 
The connections of this mirror model with the percolation problem and the 
statistics of polymer chains on a lattice are also discussed. 

KEY W O R D S :  Lorentz model; Ehrenfcst wind-tree model: lattice gas; 
diffusion; abnormal diffusion; bond percolation; polymer chain. 

1. I N T R O D U C T I O N  

In Lorentz gases independent point particles move through randomly 
placed stationary scatterers. These systems are named after H.A. 
Lorentz, t~ who first introduced them as a model to study the electrical 
conductivity of metals. Here identical hard spherical objects elastically 
scatter oncoming particles (cf. Fig. la). Subsequently, the Ehrenfests 12~ 
introduced the so-called wind-tree model to illuminate some of the difficulties 
in understanding the nature of the Stoszzahl Ansatz in the Boltzmann 
equation. In this case diamonds (trees) with parallel corresponding 
diagonals scatter onrushing (wind) particles (cf. Fig. lb) in the plane. 
While in the case of spherical scatterers all velocity directions can occur, in 
the wind-tree model, only four occur if a (wind) particle starts out in one 
of the four directions along the + x  or __+y axes. In all Lorentz models 
there is only one conserved quantity in a collision with a scatterer: the 
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Fig. I. Particle trajectories in various Lorentz models: (a) circular Lorentz model; (b) 
Ehrenfest wind-tree model; (c) probabilistic lattice Lorentz model with transition probabilities 
shown {for clarity, the trajectory of the particle has been drawn slightly away from the lattice); 
(d) mirror model with both kinds of mirrors shown. 

number  of  particles. The m o m e n t u m  of a particle is not conserved and its 
energy is trivially connected with its mass,  since the speed v of each particle 
never  changes and only a redistr ibution of velocity directions occurs. 
Therefore,  in Lorentz  gases one considers diffusion processes rather  than 
the flow processes that  occur  in fluids where mutual ly  interacting particles 
move  together.  

In a normal  diffusion process, the probabi l i ty  P(r, t) to find a particle 
at the posit ion r at t ime t obeys the diffusion equat ion 

c~P(r, t) = D V2P(r, t) ( 1. ~ ) 
dt 

where D is the diffusion coefficient. The  solution of Eq. (1. i )  is a Gaussian:  

F | qd/2 
P(r, t)=L4---~_ I e - ; / 40 '  (1.2) 

if the particle is initially at the origin at t - - 0 .  Here d is the dimension 
of space and r = Irl. F r o m  (1.2) it follows immediately  that  for a normal  
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diffusion process the mean square displacement A(t) is proportional  to the 
time t: 

zJ( t)  = ( r  2 ) = 2 d D t  (1 .3)  

o r  

( x  2 )  = 2 D t  (1.3') 

Here the average is over initial distributions of the scatterers. For a 
Gaussian distribution function of 7, all odd moments in r vanish, while all 
even moments  can be expressed in terms of the second moment,  so that all 
(even) cumulants vanish. In particular, the kurtosis 

( x  4 ) - 3 ( x 2 )  2 
K -  ( x 2 )  2 (1.4) 

vanishes. 
The only quantity left to be determined is the diffusion constant D, 

which can be achieved by kinetic theory. In particular, one can then 
determine the dependence of D on the density n of the scatterers, in the 
next section we will summarize some kinetic theory results for a number of 
Lorentz models with different scatterers, in particular for the continuum 
Ehrenfest wind-tree model. 

2. KINETIC THEORY FOR CONTINUUM LORENTZ MODELS 

2.1. Low-Density Limit 

In this case the diffusion coefficient D can be computed from a 
linear Boltzmann equation. TM This equation only takes into account 
"uncorrelated collisions," where the wind particle never scatters twice from 
the same scatterer, so that no memory effects are taken into account. Then 
one has for spherical scatterers of radius a, (3~ 

DSph= v __1 (2.1a) 
3~na  2 ,=v=  1 ; 3~n 

for disks of radius a,  131 

3v 3 D disk . . . . .  , (2.1b) 
16na . . . . .  J 16n 
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i 
Fig. 2. Four kinds of event~ which contribute to the corrections t~) the B~ltzmam~ 
approximation of the diffusiori coefficient of the Ehrenfest wind-tree model: {a/ repeated 
collisions between two scatterers; (b) ring events; (c) orbiting events; (d) retracting evenls. 
For definitions of these events, see ref. 4. 

and for the wind- t ree  model ,  (3) 

v 1 
D ~'~'= - -  , ~ (2.1c) 

4 n a  ~ . . . .  ~ 4n 

where a is the length of  half  of a d iagona l  in the case of the wind-tree  
model.  In  this paper  we will use units t h roughou t  such that  a = v = I. 

2.2. I n t e r m e d i a t e  Dens i ty  

In this case correc t ions  to the Bol tzmann  a pp rox ima t ion  have to be 
taken  into account  that  incorpora te  cor re la t ions  between coll is ions when 
scat terers  are hit more  than once by a wind particle. To ob ta in  the first 
cor rec t ion  to the Bol tzmann  result for the wind-tree  model ,  i.e., the term of  
O(1 ) in the densi ty  n, one has to cons ider  four  classes of  events, typical  
examples  of  which are sketched in Fig. 2. The con t r ibu t ions  of  these events 
to D were c o m p u t e d  by Hauge  and Cohen  (4"7) for two cases: 
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2 .2 .1 .  N O V  C a s e .  The scatterers (trees) cannot overlap. Then one 
finds 

where 

w.,. (2.2a) D wt'= D~ "t" + D .... 

fro2 q- 41 ~ 1 } 
D ~ ,  = - ~ + + ( < 0.1 ) (2.2b) 

and the expectation is that a normal diffusion process takes place. 

2.2.2.  OV Case .  The scatterers can overlap each other. In that 
case an abnormal diffusion process occurs, slower than normal, since the 
mean square displacement d(t) grows slower than t', (4"5~ 

d( t )~ t  j 4"/3+~ (2.3) 

This behavior is due to the retracing events (cf. Fig, 2), which cause 
excessive backscattering of the wind particles, From (2.3) and (1.3) it 
follows that the diffusion coefficient defined by 

D =  lira D ( t ) = 0  (2.4) 
t ~ ,yJ 

vanishes in this case. 
These results for D were confirmed by computer simulations of Wood 

and Lado (6~ (cf. Fig. 3). In view of the developments discussed below, a 
determination of Pfr, t) would be of interest. This behavior of the diffusion 

10 ~ : - r - - T  r T r ~ r l  r r - - T T v r r n ' v - - - v - - r r ~ l " ~ ' r l - - - - r  r ~  ~ , , r , ~  

Fig. 3. 
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Normal and abnormal diffusion in the Ehrenfest wind-tree model with 8192 scatterers 
(from rcf. 6). 
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in the OV case only obtains for n < l  approximately. For high m a 
dynamical phase transition occurs, ~5"7"~ to a phase where no diffusion takes 
place anymore, since a wind particle finds itself always trapped, due to a 
percolation transition of the trees. 

3. THE LORENTZ LATTICE GASES 

In the Lorentz lattice gas, independent point particles move in discrete 
(unit) time steps on a discrete regular lattice from site to site, a number of 
which are occupied randomly by stationary scatterers (cf. Fig. lc). We will 
restrict ourselves to a square lattice and consider two types of scattering 
laws: 

(i) Probabilistic: such models have been extensively studied by 
Binder, Ernst, and van Velzen. ~ 12~ Here the probabilities for particle to be 
scattered upon collision in the forward (~), backward (//), or side direction 
(1') are given (cf. Fig. Ic). Clearly, ~ + [~ + 2~/= 1 must be satisfied. The case 
c~ = [J = 0, ~ = I/2 appears to correspond to the continuous wind-tree model. 

(ii) Deterministic: we will discuss a strictly deterministic model, 
introduced by Ruijgrok and  Cohen, ~c~ where the scatterers behave like 
double-sided mirrors that are oriented along the diagonals of the lattice at 
angles +~/4 (right mirror) or - n / 4  (left mirror) with the positive x axis, 
respectively (cf. Fig. ld). 

Two mirror models have been considered: model A, where the mirrors 
are fixed, and model B, where they flip to the other direction after collision. 
Hence, in model B, there are interactions between the moving particles via 
the mirrors. The case of equal nuumbers of left and right mirrors seems to 
correspond to the wind-tree model. Thus, in the probabilistic models there 
are two types of lattice sites: with or without a scatterer; while in the 
deterministic mirror model there are three types: with a right, a left, or no 
mirror. 

4, PROBABILISTIC MODELS 

To treat these models, we introduce occupation variables c. such that 
c, equals 1 or O, depending on whether the site n = (n,, n~,) is or is not 
occupied by a scatterer, respectively. In the Boltzmann approximation of 
uncorrelated collisions, one replaces all c~ by c, the fraction of the lattice 
sites occupied by scatterers. This implies that one then replaces the set of 
occupied and unoccupied lattice sites, characterized by {cn}, by a "mean 
field approximation," where each lattice site has scattering probability ca, 



Lorentz Lattice Gases 1159 

cfl, c7. As shown by Ernst and van Velzen, 1~21 the diffusion coefficient is 
then given by 

1 ! 
D PrOb B - - -  (4.1) 

4c(fl + ?) 4 

where the second term on the r ight-hand site is due to the discreteness of  
the lattice, t'4) and one has taken a = v = 1. 

Two cases have to be distinguished: 

(i) No  reflection: f l = 0 .  Then 

I 1 1 1 
D P r o b  __ , n p~~ . . . .  (4.2) 

B 4c7 4 ~=0 ~ 2c 4 

In this case it is believed that Flpr~ is the low-density limit of  D, i.e., that  ~ B  

cDH = lira,. ~ o cD(c). 
(it) Reflection: fl#O. Then the Boitzmann expression (4.2) is not  the 

correct low-density limit of D(c), since there are contributions from 
correlated collisions that are of  the same order in c as the uncorrelated 
collisions taken into account  in DH, i.e., of  order c ~. To account  for those. 
the actual {c,} are needed. The collision events that now contribute are 
given in Fig. 4 and their contributions to D(c) can be approximately 
computed  using the effective medium approximat ion (EMA)J  TM ~2~ Figure 5 
shows a comparison of cD(c) as obtained from computer  simulations for 
various probabilistic models and those in the Boitzmann and EMA 
approximations,  The agreement of  the experimental and EMA results is 
clearly very good. 

-AL )___ 
2 ~ .  - _ 3 . ) -  

Fig. 4. Examples of events that contribute to the diffusion coefficient in order O(I): 
(a) repeated rings; (b) nested rings. For dcefinitions of these events, see refs, 11 and 12. 
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Fig. 5. Comparison of the EMA results (solid curves) for cl)(c) of the probabilistic Lorentz 
lattice model with both the Boltzmann approximation (dashed lines) and the simulation 
resuhs. Simulations are indicated by their error bars only (from ref. 12). 

5. M I R R O R  M O D E L  

5.1. Boltzmann Approximation 

W e  i n t r o d u c e  n o w  six o c c u p a t i o n  var iables :  

ni(r ,  t) = 1 o r  0 ( i =  1,..., 4), if a par t ic le  is o r  
is no t  a t  r, t, respect ively;  

mR(r,  t) = I o r  0, i f a  r ight  m i r r o r  is o r  
is no t  at  r, t, respect ively;  

me(r ,  t) = 1 or  0, if a left m i r r o r  is o r  
is no t  a t  r, t, respect ively  

T h e  m i c r o s c o p i c  e q u a t i o n s  of  m o t i o n  are  

ni ( r  + ei, t +  1 ) = ( 1  - - r n R - - r n L ) n i + r n R n ~ +  I + m t  n i_ 

ni(r + ei, t + 1 ) =  ( 1 - - m R - - m L ) n i  + m R n i _  l + mLni+ l 

( i =  ~, 3) 

(5 .1at  

(i = 2, 4)  

(5.~b) 
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where the occupation numbers on the right-hand sides are all taken 
at r, t. 

To obtain the Boltzmann approximation, we proceed in two steps: 
first one introduces average occupation numbers f,., defined by 

f,(r, t ) =  (n,(r, t ) )  ( i=  1, 2, 3, 4) (5.2) 

where the average is taken over random initial configurations of the 
scatterers. 

Second, one makes the "molecular chaos" assumption of the 
independence of the occupation numbers for particle velocities and mirrors 
on all lattice sites, i.e., one sets 

(ml~n t )=(m,~) . (n , )=cR.J l  ( i=  1, 2, 3, 4) (5.3a) 

( m ~ n ~ ) = ( m c ) . ( n ~ ) = c c . f ,  ( i=  1, 2, 3, 4) (5.3b) 

where cR and Cc are the fractions of the right and left mirrors on the lattice, 
respectively. 

Using (5.2) and (5.3) in (5.1), one obtains the linear Boltzmann 
equation: 

4 

. / i ( r+e , , t+ l )=/ i ( r , t )+  ~. To.~.(r, t) ( i = 1 , 2 , 3 , 4 )  (5.4) 
; = 1  

where the collision matrix is given by 

( _ c  c .  0 

T =  cR - - t '  C/. 

0 CL --(' ( ' R ,  

C L 0 ('R - - ( / '  

(5.5) 

Solving this equation for the diffusion coefficient by either the Chapman-  
Enskog method ~1 or the method given in ref. 10 leads to the following 
expression for a typical diffusion coefficient in the Boltzmann approxima- 
tion when c~ = cr = c/2: 

1 I 
O~4(c) = 2c 4 (5.6) 

which is the same as for the probabilistic y = 1/2 case. For c,. r oR, we have 
a diffusion tensor, with an xx or yy component equal to 

c 1 
D ~ ( c ) = 8 c t c ~  4 (5.7) 

S22 e, 2/5-Oq 8 
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5.2. Computer Simulations 

We checked the above results on a Microvax 11, using a I024 x ~024 
basic lattice with periodic boundary conditions for the scatterers. About 
2600 particles were randomly distributed among the lattice sites and their 
motion was followed on the infinite checkerboard formed by the basic 
lattice and its periodic images, for typically time steps up to several 
thousand mean free times, where the mean free time equals l/c here. For 
A(t) and D an average was taken over about 20 different random 
configurations of the scatterers after an average had been obtained over the 
2600 particles in each configuration. However, for the probability density 
distribution functions more elaborate averages were needed in order to 
obtain sufficiently accurate representations of these functions. Thus, in that 
case first an average was taken over a group of 100 different random 
configurations of the scatterers as well as over the 26(X) particles in each 
configuration; then a second average was carried out over ten such groups. 
The statistical errors (standard deviation of the mean) are given in the 
figure captions; for the mirror models, the error bars are always within the 
symbols used in the figures. We first quote the results for :model A. 

5.2.1.  M o d e l  A. (i) Mean square displacement. The diffusion 
coefficients, defined in Eq. (1.3), are plotted for several mirror concentra- 
tions in Fig.& They reach constant walues in the large time limit/~3'~4~ 
cD(c) is plotted as a function of c for cR --- ct. = c/2 in Fig. 7. The positive 
deviations from the Boltzmann result, Eq. (5.6), can amount to about 17 %. 
They can be ascribed to local fluctuations in the random mirror distribu- 

~3 

1.000 

0 . 5 0 0  

0.000 

2.500[ C=0.25 

1.500 C=0.4 

V V V V v ~ V V V V V ~ V V V V ~ V  

I 
C=0.8 

o O O O O O O O O O O O O O O O O O o  
C=1.0 

o o o e o e e l o o e Q o o e t o |  

I i I ~ - -  
2000 4000 6000 8000 10000 

t 
Fig. 6. Time dependence of D of the fixed mirror model for several concentrations, Each 
data point was averaged over 20 configurations and the statistical error is ~0,03 for c = 0.25, 
~0.02 for c=0 .4 ,  and ~0,01 for c = 0 . 8  and 1.0. 
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Fig. 7. Concentration dependence of cD(c)  of the fixed mirror model (filled circles) and 
flipping mirror model (filled triangles) at t = 4000 time steps. The dotted line is the Boltzmann 
approximation and the dashed line is the equation cD = cD B + c/8. Each data point was 
averaged over ten configurations for the flipping mirror model and 50 for the fixed mirror 
model; the statistical error for both curves is ~0.004. 

tion leading to patches of parallel (either right or left) mirrors that speed 
up the diffusion due to zigzag motions. The experimental points are fitted 
well by the formula ~4) cD = cDB + c/8 for 0 < c < 0.8. The sharp decrease of 
D for c>~ 0.8 can be related to the quickly increasing probability of closed 
orbits which slow down the diffusion. 

(ii) Kurtosis. Except for very low density, the kurtosis (cf. Fig. 8) is 
manifestly different from zero, leading to a maximum of about 3.7 for 
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0.000 
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I I I I 
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Fig. 8. Concentration dependence of the kurtosis of the fixed (filled circles) and the flipping 
(filed triangles) mirror models at t = 400 time steps. The configurations used here were the 
same as in Fig. 7 and the statistical error is ~0.06 for the fixed mirror model and 0.03 for the 
flipping mirror model. 
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cR = cL and c =  !. This implies a non-Gaussian density distribution func- 
tion P(r, t), in spite of the proportionality of A( t )  with t. 

(iii) Probability density distribution function. We computed the 
distribution function /5(r, t ) =  2nrP(r ,  t), the probability density of finding 
a particle between a distance r and r + dr at t if it was at the origin at t = 0. 

In Fig. 9, /3(r, t) is plotted for four concentrations at t = 1024. The 
jumping of the experimental data with increasing steps of r reflects the dif- 
ference in the number of trajectories on which a particle can reach 
neighboring points. For all e there is a sharp maximum near the origin, 
which increases with c, due to the increasing probability that a particle, 
starting at the origin, will find itself in a closed orbit when the number of 
scatterers increases. For intermediate r, there is a depletion of probability 
as compared to a Gaussian P, while for large r there is an excess of 
probability compared to the Gaussian P, which could be related to the 
diminished probability of a particle to be in a closed orbit and the effect of 
zigzags. In Fig. 10 the time evolution of/3(r, t) is sketched by plotting it for 
three values of t. As time proceeds, the peak due to closed orbits extends 
more and more to larger r; the expected limiting distribution b for t ~ 
is a monotonically decreasing function of r with a sharp peak at the origin, 
very different from the limit distribution for a Gaussian, which is 
vanishingly small everywhere along the r axis. 

Comparing mirror model A with the OV-wind-tree model, one notices 
that, while both have non-Gaussian P(r, t), in the former case, A( t )  ~ t, so 

that a diffusion coefficient can be defined, while in the latter case 
A( t )  ... t I -~"~ [~ (n)>  0],  so that no diffusion coefficient can be defined. An 

0.015- 

c=0,25 (a) 

! . "  �9 

0.005 " i  . 

O . O 0 0  ~ ] 
50 100 150 200 250 300 

r 

Fig. 9. Probability density distribution functions /~ of the fixed mirror model for four 
different mirror concentrations at t =  1024. The drawn curves are Gaussians  with the 
measured diffusion coefficients. The relative statistical errors are ~&01. 
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Fig, 10. Probabil i ty density distribution functions P of the fixed mir ror  model  for c = 0.5 at 
t = 1024 (open circles), 2048 (filled circles), and 4096 (filled triangles). The relative statistical 
errors  are ~0.01.  

important question is: what is the equation that P(r, t) satisfies? Such an 
equation would capture mathematically a diffusion process for a deter- 
ministic model, incorporating in particular the occurrence of closed orbits. 

5.2.2. Model  B. (i) Mean square displacement. Again A(t) ~/,,!3.~4,~ 
so that a diffusion coefficient D can be defined; we plot cD(c) versus c for 
cR = cL in Fig. 7. The deviations from the Boltzmann result are small and 
negative for c<0.75. These negative deviations could well be due to 
memory effects associated with ring collisions. For c >0.75, the positive 

0.0.30 �9 

0.020 - 

EL 

0 .010-  

] 

o 50 1 oo 15o 

[ 

Fig. 1 t. Probabi l i ty  density distribution function /~ of  the flipping mirror model for c = 1~ 
at t = 2053. The drawn curve is a Gaussian with the measured diffusion coefficient. The 
relative statistical errors are ~0.01.  
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deviations appear to be related to zigzag events. ~14~ Since these results for 
D do not change when one puts only one particle on the lattice, no effect 
of an interaction between the particles due to the flipping of the mirrors is 
apparent here. 

(ii) The kurtosis in this model is zero for all c (cf. Fig. 8), suggesting 
a normal diffusion process and an absence of closed orbits. 

(iii) Indeed, the distribution function P(r, t) is indistinguishable from 
that obtained for a Gaussian P(r, t) and in particular, no peak at the origin 
occurs (cf. Fig. 11 ). 

6. C O N N E C T I O N  W I T H  P O L Y M E R  S T A T I S T I C S  A N D  
P E R C O L A T I O N  

6.1. P o l y m e r  S t a t i s t i c s  

It is well known that a self-avoiding walk (SAW) on a lattice can 
be related to the statistics of polymer chainsJ TM A different kind of SAW, 
the smart kinetic walk (SKW), has been introduced by Weinrib and 
Trugman ~6~ on a triangular lattice. The motion of a wind particle on the 
square lattice for the case c L = cR = 1/2 of the fixed mirror model can be 
considered as an SKW. In this walk the wind particle has a probability 1/2 
to turn left of right when it visits a lattice site occupied by a mirror for the 
first time, since there is an equal a pr ior i  chance that this mirror is a right 
or a left mirror. However, the probability for the particle to turn left or 
right upon a second visit to the same mirror is 1, since the particle will 
remember the fixed orientation of the mirror. This memory constitutes the 
smartness of the walk and is the difference with the SAW. The walk 
terminates when the wind particle comes back to its starting point with its 
initial velocity, so that the length of the walk no longer grows. It has been 
argued ~jTI that the SKW can be used to describe the statistics of polymer 
chains in a solvent at the collapse point, the T = O  point. This is the 
transition point where, with decreasing temperature T, the chain suddenly 
transforms from an extended to a compact object. 

If the interaction energy between nearest neighbor monomers in the 
polymer chain is J, then the Boltzmann weight for all configurations of a 
chain with M pairs of interacting monomers contains a factor 

e s M / ~ r  (6.1) 

Since there is no interaction energy in a SAW, i.e., J =  0, all realizations of 
a SAW of a given total length have the same Boitzmann weight. However, 
from the construction of our SKW-- in  particular, that the probability of 
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turning is equal to 1 instead of 1/2 when the wind particle hits the same 
mirror for the second time--it  follows that its Boltzmann weight is 

WsKw : WsAw 2M = WSAW e~ ~'' :' {6.2) 

where M is the number of mirrors hit twice by the wind particle. Thus our 
SKW can be considered to be at a temperature k H T= -J / In  2, where J is 
the attractive nearest neighbor interaction energy. Furthermore, it is 
unclear ~18~ whether the SKW on a triangular lattice belongs to the same 
universality class as a polymer chain at the O point, because of the 
presence of next-nearest-neighbor interactions. Since such interactions are 
absent in the case of our square lattice, it is reasonable to assume that our 
SKW is in the same universality class as a polymer chain at its O point and 
is therefore a good model for such a chain at the O point. 

6.2. Percolation 

The right and left mirrors in the fixed mirror model can be mapped 
onto the bonds of a bond percolation problem on two sublattices of the 
original lattice (cf. Fig. 12). For the case c =  1, when all lattice sites are 
occupied by mirrors and oR=eL= 1/2, the probability of occupancy of 
each bond of each sublattice by a mirror is 1/2. Thus, each sublattice is at 
the bond percolation threshold/~9~ where an infinite cluster of bonds 
appears. Since any mirror can be on one and only one of the two sub- 
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. i " " " " 
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"'~ ~ / \  
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Fig, 12. (a) Two sublattices (dashed and dotted lines); (b) two bond (mirror) clusters, each 
of which is on one of the two sublattices. Their common boundary is shown to be the 
trajectory of a moving particle on the original lattice. The number of mirrors hit twice here 
is M = 7 .  
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lattices, the percolation clusters formed by the bonds on the two sublattices 
are separated and not interconnected. The boundaries of these percolation 
clusters can be considered as the trajectories of moving particles on the 
original lattice (cf. Fig. 12). 

This connection allows a dynamical calculation of the scaling 
exponents of the bond percolation problem on the sublattices as well as of 
those associated with the statistics of polymer chains, through properties of 
the trajectories of particles on the original lattice. 

Thus, the scaling theory result for the square of the end-to-end 
distance of polymers chains consisting of N monomers, (~5'2~ 

2 N2,., 4/7 (6.3) ( r N > , ,  "~ with v = 

can be compared with the mean square displacement at time t = N, 3o(t) ,  
of the--a t  this time still--open orbits of a wind particle, to which the 
subscript o refers. We find for c =  1 and t =  10,000, v =  1.141 ___0.003, ~4~ 
consistent with (6.3). 

Similarly, from percolation theory it follows that the probability for 
open orbits of length N is given by ~2~ 

P , , ( N ) ~  N 1/7 (6.4) 

which is consistent with our result of an cxponcnt = -0.142 __+0.003 ~14~ for 
an open trajectory at time t = N =  2 ~7 

7. D I S C U S S I O N  

(i) There is a fundamental differencc between probabilistic and deter- 
ministic lattice gases in that only in the latter can permanently closed 
orbits, i.e., periodic orbits, occur. For, although a particle can return to its 
original position and velocity also in a probabilistic gas, at every instant of 
time there is a finite probability that the particle will jump out of the 
previously covered part of its trajectory. This "stability" of closed orbits in 
the deterministic model seems to be at the root of the abnormal diffusion 
in those models as well as of the m a p p i n g - f o r  c =  i - - o n to  the polymer 
statistics problem. 

(ii) It would be interesting to extend the present study to triangular 
lattices, the behavior of which should resemble more the circular Lorentz 
models. In addition, a study of the mirror model on a cubic lattice would 
be of interest. 

(iii) The occurrence of many closed orbits near the origin in the fixed 
mirror model implies that a photon beam radiated into the lattice along a 
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bond at the origin would retain a finite intensity near the origin for all 
time, trapping a number of photons permanently into closed orbits near 
the origin. On the contrary, in the flipping mirror model, no such trapping 
would occur and only a vanishingly small number of photons woutd 
remain in time at the origin. 

(iv) As mentioned before, it would be of importance to obtain an 
equation for P(r, t) for the fixed mirror model. For, such an equation 
would incorporate the effect of closed orbits in the abnormal diffusion 
process. It would describe a new type of diffusion, for which the central 
limit theorem does not hold because of correlations, among others, due to 
closed orbits. In a more general context, such an equation would contain 
features that could be relevant not only for the lattice gas diffusion problem 
considered here, but possibly also for other diffusion processes with 
deterministic constraints, such as those occurring in polymer diffusion, as 
discussed by Edwards. ~221 
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